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A statistical mechanical formulation for the steady state of self-organized magnetohydrodynamic
plasma is studied based on the empirical variational principle, §(E — AH) = 0, for the steady state,
where E and H denote the energy and the helicity of a magnetic field. The eigenfunctions of the
curl operator are shown to span the phase space of a magnetic field in a bounded system, and the
invariant measure is found. The classical ensemble theory is formulated assuming the Shannon or
Rényi entropy. To avoid the divergence of the expectation values at nonzero temperature, Bose-
Einstein statistics is also phenomenologically treated. It is implied that the spectra of the energy,
helicity, and the helicity fluctuation obey the power law for a multiply connected domain with a
nonzero cohomological field. For the toroidal system, these powers are implied to be three, three,
and two, respectively. The invariant measure for the incompressible flow in a bounded domain is

also given.

PACS number(s): 95.30.Qd, 02.30.Sa, 02.50.Cw, 05.20.—y

I. INTRODUCTION

The magnetohydrodynamical systems generate macro-
scopically ordered states from random disordered states.
These phenomena are primarily due to the dynamical
laws of such systems, that is, the magnetohydrodynam-
ics equations (MHD equations). These equations are,
however, not simple and they determine the behavior of
the system more precisely than we expect. What we
want to know is not a microscopic structure which fluc-
tuates much under the change of minute conditions but
the macroscopic coarse-grained structure which is stable
under the microscopic changes.

Such separation of the scale is usually impossible.
Strong experimental or mathematical conditions are in-
dispensable. In some MHD systems, its self-organization
phenomena seem to allow us to postulate the possibility
of self-contained and self-consistent descriptions in the
macroscopic level without referring to the microscopic
details. More explicitly, we have a quantitative phe-
nomenological variational principle which determines the
macroscopic structure of a magnetic field [1,2]:

0(E—AH) =0, (1.1)
where E and H denote the energy and the helicity of
a magnetic field, respectively. This variational princi-
ple first appeared when Chandrasekhar and Woltjer [1]
discussed the minimum energy state of magnetic flux
tubes tangled in a stellar plasma with introducing the
magnetic helicity to characterize the twist of magnetic
fields. With a fixed gauge, we write the magnetic field
B = V x A. The helicity density is h = A - B, and
the helicity in a fixed domain 2 is H = fn hdxz. He
assumed that the plasma relaxes into the minimum en-
ergy state with a given (prescribed) helicity. In a low-
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pressure charge-neutral plasma, the energy is dominated
by E = (2u)~! [, B*dz (po, vacuum permeability).
By formal calculations of the variation with appropri-
ate boundary conditions, the minimum energy state is
shown to satisfy the Beltrami condition

V x B = AB, (1.2)
where ) is a real constant (corresponding to the Liagrange
multiplier). Since the current density j = (uo)” 'V X
B in steady state, (1.2) implies the force-free condition
(7 x B = 0), which had been considered to be obeyed
by the relaxed magnetic field in a plasma [3]. If A is an
eigenvalue of the curl operator, Eq. (1.2) implies that B
is the corresponding eigenfunction. And it was shown
that the state becomes unstable when |A] > Amin [4],
where Amin is the nonzero and minimum absolute value
of the curl eigenvalues, without charging some conditions
which fix the modes with absolutely smaller eigenvalues
than A. This Amin is proved to be positive (nonzero) [5].
So theoretically and experimentally interesting problems
are the state for 0 < [A| < Amin-

Exactly the same equation as (1.2) was found to de-
scribe the relaxed state of turbulent plasmas in labora-
tory experiments. Taylor [2] conjectured that a selective
dissipation of the magnetic energy with respect to the
helicity yields such a relaxed state. By Maxwell’s equa-
tions, we obtain “Poynting’s law” for the helicity,

Oh=-V .- (¢B+FE x A)+2E - B, (1.3)
where E (= —8;A — V ¢) is the electric field and ¢ is the
scalar potential. Assuming a perfectly conductive wall at
the boundary 8%, we obtain, using (1.3),

d
—H = 2F - Bdzx. 1.4
2 /n . (1.4)
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In a highly conductive hydrodynamic plasma, E; =
E -B/|B| = 0, and hence H is conserved. Further-
more, under the perfectly conductive boundary condi-
tion, n x E = 0, the helicity can be formulated to be a
gauge invariant quantity. The conservation of the helicity
imposes an essential restriction on the dynamics of the
plasma. If H remains constant while the magnetic energy
FE achieves its minimum, the relaxed state is character-
ized by the minimizer of F = E — XM H, and the formal
Euler-Lagrange equation becomes (1.2).

Thé dynamical process of the relaxation was studied by
computer simulations based on three-dimensional magne-
tohydrodynamic model equations [6].

Let us now revisit the thermodynamics and its statisti-
cal mechanics. Many experiments and speculations sup-
ported that the thermal equilibrium state is determined
by the variational principle

8(F) =0, (1.5)

where F' denotes the free energy. The thermodynam-
ics itself is a self-consistent and self-contained theory
within the macroscopic quantities like volume, pressure,
and entropy. The statistical mechanics gives the rela-
tions between the microscopic dynamics and the macro-
scopic thermodynamics by assuming appropriate ensem-
bles. The Boltzmann distribution is a kind of working hy-
pothesis. It reproduces the correct results and its math-
ematical structure is now accepted to be natural. The
additivity of the energy and the importance of the en-
ergy as the principal integral of the equation of motion
imply the Boltzmann distribution with appropriate in-
variant measure. So most physicists already accepted
that the ensemble and the Boltzmann distribution have
sufficient reason to be regarded as the reality.

The purpose of this paper is to elucidate the ensemble
description for a MHD system starting from the formal
similarity between Eq. (1.1) and Eq. (1.5). It is to pro-
pose a statistical mechanics for a MHD system. There
are pioneering works [7-9] towards such statistical me-
chanics already, which will be discussed at the end of
this paper.

In this paper, we will make a statistical treatment only
for the magnetic field. The velocity field is not treated
explicitly in our formalism, because it does not appear in
Eq. (1.1) explicitly. The variational principle (1.1) is in-
terpreted as the zero-(helicity)-temperature form of the
thermodynamic variational principle of the helicity en-
semble. Appropriate space for this purpose is analyzed
in the next section and a good phase space with invari-
ant measure is given. A related topic of this phase space
is given in the Appendix. In this space, the solution of
Eq. (1.1) is studied in the third section. This solution
is considered as the zero-temperature ground state. The
fourth section proposes a simple quantal statistics after
we see that the simplest classical statistics shows diffi-
culty. Some connections to the experimental verification
of this statistical mechanics are given in the fifth section.

II. PHASE SPACE

When an equilibrium or steady state exists, there are
two key steps towards the statistical mechanical tran-
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scription of a variational principle. One is to find the rel-
evant additively conserving quantity to characterize the
state. In our case, the energy and the helicity of magnetic
field play this role. The other is to find the invariant mea-
sure of the temporal evolution equation. It corresponds
to Liouville’s theorem in the classical Hamilton mechan-
ics. In this section, it is proved that the expansion coeffi-
cient of the magnetic field, B, with the complete orthog-
onal functions described below is a natural phase space
and its volume element is temporally invariant.

Let @ (C R3?) be a bounded domain with a smooth
boundary 9€2. We denote by n the outward unit normal
vector onto 9. We consider a function space of real
solenoidal vector fields in Q,

LZ(Q)={ue L*(Q);V-u=0inQ,n-u=0on N},
(2.1)

which is a Hilbert space endowed with the standard L?
innerproduct ( ). If Q is multiply connected, we obtain
the subspace of harmonic vector fields,

Ly (Q) ={ue L*(Q);V-u=0,Vxu=0

inQ,n-u=0o0ndN}, (2.2)

which represents the cohomology class, and the dimen-
sion of this L% () is equal to the first Betti number v
of Q. We write L2(Q) = L% (Q) & L%(Q?), where L% ()
is defined as the orthogonal complement of L% (). For
these function spaces, the following lemma is proved [5].
Lemma 1. (1) When we consider eigenvalue problem
V xu=2u, ueclLi(Q), (2.3)
we obtain a complete orthogonal set of eigenfunctions
to span L%(Q). All eigenvalues are real, nonzero, and
discrete.
(2) For every u € L%(Q2), we have an orthogonal ex-
pansion

u =Y (u,p;)p; + _(u,he)he,

7 =1

(2.4)

where ¢; € L%(Q) is the eigenfunction of the curl oper-
ator and hy is the orthogonal basis of L% ().

In the following, the subscript j for the nonzero eigen-
value and its eigenfunction of curl operator is assumed
to run over all integers except zero, and this numbering
is assumed to follow the order of the eigenvalue. Nega-
tive and positive subscripts are assumed to correspond
to negative and positive eigenvalues, respectively. That
is, the eigenvalue numbering looks like

i €Ag <€A <AL <O A KA < Ag < -ee
(2.5)

These are unbounded and go to oo when j — t+oo.
Now we can find the phase space of the magnetic field.
Lemma 2. Let v(z,t) be a smooth vector field in €.

Suppose that a solenoidal vector field f(z,t) obeys
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Whf=Vx(vxf) inQ,
nx(vxf)=0 ondQ.

(2.6)
(2.7)

Using the eigenfunctions of the curl operator, we expand

= ZCJ (t)pj(z +Zce Yhe(z

J
(see Lemma 1). Then, dC = dé; - --
variant measure.

In fact, by the boundary condition (2.7), we observe

f(z,t) (2.8)

dé, HJ- dc; is an in-

d

aég =0 (Vo). (2.9)
Using (2.6) and (2.7), we obtain
d
G = (Vx (v x o)) = (0 £,V x ;)
- /\J(v X fa‘PJ)
=Aj ch(v X Pk, p5) + Zée(v X he, p;)
k =1
(2.10)
Since (v X ;) - ¢; =0, we find
9(dc;j/dt)/0c; =0 (V7). (2.11)

Hence the measure dC is invariant. This implies that
these ¢ and ¢ are a good set of coordinates in the phase
space in the statistical mechanical sense.

In a MHD system, v and f are the velocity field of
the fluid motion and the magnetic field, B, respectively.
The velocity field is now treated to be a separated free-
dom from the magnetic field. This treatment will be good
when the magnetic field has the most energy in the sys-
tem, and then the velocity field acts as a perturbation or
as a fluctuation generator to the magnetic field. When
we expand a magnetic field as

Z cipi(z) + Z ¢rhe(z)
=1

J

the second summation term over the harmonic field in
the RHS is the same for all possible B because of the
boundary condition n x E = 0. It is called the cohomol-
ogy field. So we do not treat ¢, as a dynamical variable,
instead, as a constant. Ounly c;’s are treated as dynam-
ical variables, and the first summation in the RHS of
Eq. (2.12) is denoted by Byx. The energy of this B is
expressed as

B(z) = (2.12)

v
E=Y 2+ & (2.13)
i =1
The second summation, the energy of the cohomology
field gives only a constant contribution. Taking g, to be
hy = V x g;, the vector potential of B is

A) =Y %}<p,-(m) +3" agi(x) (2.14)
i 7 =1
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We can add any function in L% () to vector potentials
of the cohmology field, Y, & g;(z). This corresponds to
the gauge degree of freedom.

The relative helicity is defined by

/ A-Bydz = Z < +L; c,) , (2.15)
where
L; = ZC(AJ ¢ (2.16)
£=1
and
Bje= (P> ge) (2.17)

The A;, may be called the cohomology-helicity coupling
constant. The L; is named the cohomology coefficient.
The difference between the relative helicity and the helic-
ity is a constant determined only by the cohomology field
and its vector potential, so we can neglect it. It should
be remarked that the relative helicity (2.15) is gauge
invariant because of the perfectly conductive boundary
condition. In the following, we will only use this gauge-
invariant quantity for the helicity and call it simply the
helicity.

III. SOLUTION OF THE VARIATIONAL
PROBLEM

Now we can solve the variational problem (1.1). By
using the expansion Eq. (2.12), this problem becomes

o=y 5[ (1) § 0]

A2 L2
For 0 < A < min; |A;|, the solution is

4N - A)

0 _ AL ,
¢ = 20y — %) (V9)- (3.2)
The L; will decay algebraically in terms of j for large
|7l. The eigenvalue A; will be distributed uniformly
for large |j|. And we can expect that the summation
C?(Pj converges uniformly and absolutely. But we
cannot always expect such convergence for the termwisely
differentiated series 3. c 9)j¢;. The energy and the he-
licity are expressed as

A2A2L2

EZ/\—/\

(3.3)

and
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(3.4)

L; is expected to show algebraic decay in terms of 1/|j].
For example, the decay speed is expected to be the order
of 1/|7]3/? when Q is inside of a torus (7). For large |j|,
j can be regarded as the wave number k in the Fourier
analysis case except a constant with the dimensionality
of (length)~1, because the local feature of the sufficiently
high mode will not be sensitive to the boundary condi-
tion.

IV. ENSEMBLE

MHD fluid relaxes to a kind of steady state after it
starts to develop from a given initial condition. Dur-
ing this relaxation, the change of the magnetic helicity is
slow, and it can be neglected. The energy of the magnetic
field, however, dissipates largely in the early state and fi-
nally its change is also negligible in the steady state [2].
The variational principle (1.1) determines the structure
of such a steady state [we should say that the validity of
the expression “steady state” comes out of the success of
Eq. (1.1)] and our purpose is to propose a microscopic
model, which we call a “statistical mechanics of MHD,”
to reproduce this principle. In our terminology, the ther-
modynamics of MHD, Eq. (1.1), suggests that the energy
E and helicity H are the relevant state variables. H is
easily controlled by external condition, but F is not as
we described above. So the parameter 1/A works like a
chemical potential of the grand canonical ensemble. The
limitation of this chemical potential interpretation is that
these F and H are defined in the same phase space.

These E and H are additive quantities in the re-
laxed state. So the possible distribution consistent with
Eq. (1.1) is determined by specifying the information
measure. When we use the Shannon entropy, S(p) =
— S plnp, the Boltzmann distribution form in terms of
these quantities appears:

P(E,H) x exp(—aH — BE), (4.1)
where o and B are constants, and these F and H are
microscopically defined dynamical quantities, not macro-
scopic. This expression is equivalent to
P(E,H) x exp[—-B(E — AH)]. (4.2)
This A is adjusted to the notation in Eq. (1.1). The 8
is interpreted as an inverse temperature of the magnetic
field, and Eq. (1.1) corresponds to the case of large 3.
A more general information measure is the Rényi en-
tropy [10],

Sq({pi}) =

1
(> p?), (4.3)
1—g¢ S
where ¢ is a positive parameter. The Shannon entropy is

included in the Rényi entropy in the limit of ¢ — 1. The
canonical distribution based on this entropy, that is, the
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Tsallis distribution [12], also produces a similar result to
the Boltzmann distribution as is shown below.

Although the helicity H is introduced in the Boltz-
mann distribution function, this naive classical statistical
mechanics causes the same kind of catastrophe as what
we meet in the classical treatment for the blackbody ra-
diation.

A. Classical statistics

In the preceding section, it is proved that the vol-
ume element HJ- dc; is temporally conserved when the
flow velocity field is prescribed. The proof of this, more-
over, shows that each dc; is conserved. So we concentrate
on a single mode, denoted by j, first. The helicity and
the energy of this mode are cZ/A; + Ljc; and ¢, respec-
tively. The Boltzmann distribution for this amplitude c;
is

Pj(c) x exp [——B (cf - —)‘~cf - )\chj)] . (4.4)
Aj

In the variational principle, Eq. (1.1), we can assume the
condition 0 < A < min; |A;|. Assuming that [ is positive,
the distribution function is

Aj
mB(A; — A)

X eXp [—,3 (1 - %) (c; — c?)z] de, (4.5)

Pj (c)dc =

where c? is defined in Eq. (3.2) as the solution of
Eq. (1.1). In the following, the ensemble averaged value
is denoted by (). The expectation value of the energy for
this mode is

) . A2)\212
<62~>=/\—'7+(CQ)2= )\J + 2777 .
7 28(A —A) 7 28N —A)  4(A; — )2
(4.6)
The helicity is
c? 1 (CQ)Z
-7 e ) — J L.c®
<)\j+LJCJ> 25()\j—)\)+ X\ + Ljc;
AN L2 -
S S ke e BT PR

2B6(X; — A) 4 (A —A)?

The distribution over our phase space, {c;}, is simply
the product for each P;. So the average of £ and H
should be also simply obtained by summing up over all
modes:

Aj
By =2 [zﬂ(xj =SV

J

AZx2L2

40y — )2 (48)

and

1 A/\]Lf 2/\j—A
=2 [w(A,-—A) T (AJ--A)Z]‘ (49)

J
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In these summations, the summations of the “cohomo-
logical terms,”

AZXN2L2
it
d
Z 4(x; — N)? an

5 ANLE 2); — A

TGy (4.10)

J
are expected to converge, because |L;| decays faster than
1/|7]- The summation of the first terms in the helicity

may be interpreted to converge by taking the limit in the
form of

(4.11)

The first term in the energy, however, diverges. This
term expresses the equipartition of the energy for every
mode.

The Tsallis distribution for ¢; is

b

res [0 (1= 3 ) e

(4.12)

and the range of c is limited to c? - <¢; < c? +cipex,
where 1/cP** = /B(1 — A/};). Including the normaliza-

tion factor, it becomes
A
~pla-1 (1-3)

(4.13)

1

Filde = s B (i/2,0/(a — 1) [1

1/(q—1)
x(c — c‘})z] de,

where B() denotes the beta function. So the energy for
each mode is calculated to be

2\ _ )‘J‘
€)= Ba=1)B0; =)

and the helicity to be

2 ] 0)2
<—J— +chJ'> = + ( ]) +Lj‘32'

+(c9)? (4.14)

Aj Bg—1BMA; —A) A
(4.15)

So the difference between the Boltzmann and Tsallis dis-
tributions reduces to a factor in front of 3. Therefore the
choice of the entropy is irrelevant.

B. Bose-Einstein statistics

The statistical mechanics of the blackbody radiation
suggests that the quantization of the field is necessary
to avoid the divergence of energy we met above. But it
has not succeeded yet in our MHD equation case. This
difficulty can be observed in Eq. (2.6). This evolution
equation is linear in field f but the velocity field of the
plasma flow, v, will also evolve with the same time scale.
And its evolution obeys a complicated nonlinear equa-

tion, for example, the Euler equation (Al) even within
the incompressible approximation.

In spite of such difficulty for the legitimate approach
to the second quantization, the magnetic field of a steady
state in self-organized plasma is determined by the vari-
ational principle, (1.1), in which the flow does not ap-
pear. And the purpose of the present study is to make
up a statistical mechanical formulation which reproduces
this variational principle in a limit. Following is one of
the simplest formulations to avoid the Rayleigh-Jeans-
like catastrophe

The exponentiated factor, (1 —A/A;)c? — AL;c;, is re-
garded as a transformed expression of a kind of effective
Hamiltonian by replacing the canonical momentum with
the canonical coordinate, ¢;, using an unknown effective
temporal evolution equation. We do not know which part
of the c? comes from the momentum, or additional mo-
mentum contribution may be hidden. We introduce an
angular frequency w; of this jth mode. New variables,
d;, are introduced to shift the average to zero and to be
normalized, that is,

d._i[c.
J \/‘U_J J

The factor 1/,/w; is a naive normalization factor which
provides the unit of the field quantum. Then we assume
that this d; is the bosonic annihilator by charging the

L ’\’\ij] . (4.16)

T2 -

commutation relation, [di,d}] = 4;; or [c,-,c;] = w;d;;.
The Bose-Einstein statistics gives the averaged number

of these quanta in the jth mode as

1
(nj) = (djd;) = exp[B(1 — A/Aj)w;] — 1

The chemical potential is taken to be zero because we
quantized the magnetic field.

The expectation values of the energy and the helicity
are

(4.17)

(che;) = wilng) + ()% (n; = dld)) (4.18)
and
1 02
de; 1. 4 wi, (P
<z\—j+5Lj(cj+cj)> = /\—;(nj)+ ;j +chj‘
(4.19)
The total energy and helicity are
. A2)\2[12
w
E) = f] + i
=2 [exp[ﬁ(l 3] =1 T Al - AP
(4.20)
and
w; /A
H) = 2 J
{H) ; [eXP[ﬂ(l = A Aj)w;] — 1
ANLE 2 — A
—_—. .21
+ Oy =) (4.21)
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The w; will diverge when |);| diverges, and |L;| will decay
faster than 1/|j|. So these expressions now converge.

V. SOME IMPLICATIONS

The Bose-Einstein-type statistical mechanical formal-
ism proposed in the preceding section is a theoretically
naive and simple extension of the variational principle
(1.1) so that fluctuations around the variationally de-
termined state can be described. Experimental verifica-
tion is expected and some characteristic predictions of
the present formalism are shown in this section for that
purpose.

The fluctuations of energy and helicity are

Zw (Adld;)?)

exp[B(1 — A/Aj)wj]

_ Z wj {exp[B(1 — A/Xj)w;] — 1}2 (5.1)
and
(AH)) =37 /\—;((Ad"d )2)
+Lj4wj ()\j/\_j_ )\) (2(d;r.dj) o
_ w_JZ exp[B(1 — A/ Aj)w;]
_;[’\2{ plB(1 — A/Aj)w;] — 1}2
Liwi (A5 )" explB(1 = A/A;)wj] +1
+ 4 ()\- — A) exp[B(1 — M/ Aj)w;] — 1]7
(5.2)

respectively. , The summation of this second term will
converge. For a torus, for example, if w; does not grow
faster than 52, it converges. The energy fluctuation de-
cays exponentially for higher modes. But the power-law
spectrum is predicted for the helicity fluctuation from its
second term in Eq. (5.2). The power exponent is deter-
mined from j dependence of waj for large |j|.

Spatial correlation of the magnetic field can be derived.
For example, two point correlation is expressed as

(B(z)B(y)) = Z[wj(d}dj) +(c5)" (e (), p(¥))- (5.3)

It is straightforward (but tedious) to get more explicit
expression of this kind of spatial correlations.

The power-law behavior of the helicity fluctuation with
its exponent is simple and characteristic in the present
quantal statistical mechanics.

VI. SUMMARY AND DISCUSSION

A statistical mechanical formulation for the self-
organized MHD fluid is proposed. It is a naive extension
of the variational principle (1.1) which suggests that the
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structure of the magnetic field is relevant to the steady
state structure of such MHD fluid. So the velocity field
is neglected in the present formalism.

It is shown that the eigenfunctions of curl span a con-
venient phase space when the system is bounded. For
a given velocity field, the volume of the expansion coef-
ficients is temporally invariant and this corresponds to
Liouville’s theorem in the classical Hamilton mechanics.
For a cylindrical system, this has been already shown by
Turner [9] and our present proof applies in a very gen-
eral situation. Our domain covers not only a simply con-
nected domain, but also a multiply connected domain.
Furthermore, the same functional analytic space turns
out to be a good phase space with invariant measure even
for the incompressible flow (see the Appendix) and this
fact may grow to one step of the statistical mechanical
theory for the turbulent flow. Previous attempts mostly
used plane wave to make phase spaces 7], and met some
difficulties to reproduce the power-law spectrum.

In this phase space, the energy and helicity are used
as additive conserving quantities to translate the varia-
tional principle (1.1) to the ensemble and introduce fluc-
tuations. But the simplest classical statistics leads to the
divergence of the expectation values. So some more as-
sumptions are necessary to make a finite theory. One is
to restrict the relevant modes to finite as was proposed
in previous formalism [9], but the solution of the orig-
inal variational principle (1.1) itself requires an infinite
number of modes to reproduce its solution with the eigen-
functions of curl operator, as we have seen in the third
section.

Our present formalism uses the quantal statistics by
charging second quantization. The relevant functional
E — M\H including a chemical-potential-like parameter A
is interpreted as a transcription of an effective Hamilto-
nian of the system. The frequency of each mode is in-
troduced artificially. The fluctuation currently relevant
is, however, not large, that is, the temperature 1/3 is
small. So a linear dispersion approximation, w; = vAj,
will be good. The implication of the present formulation
for general geometry is stressed here: the ground-state
structure has power-law spectrum in energy and helicity
and it is also the case for the helicity “thermal” fluctua-
tion in our statistical mechanical sense. This power-law
behavior stems in the tangling of the dynamical magnetic
field with the cohomological magnetic field. Now for the
torus or cylinder, the power exponents are predicted to
be three for the ground-state energy and helicity, and
using the above linear approximation, the exponent for
the thermal fluctuation of the helicity is two. The exper-
imental observation of these power exponents will be a
good test of the present formulation.

At nonzero temperature in the present sense, the vari-
ational principle will be modified to that for the thermo-
dynamic free energy as

§(E — \H —TS) =0, (6.1)

where T is 1/ in the present formalism. S denotes the
entropy which may not have been observed because the
temperature 7" has been small. But the measurement for
the helicity fluctuation will reveal its statistical nature.
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Purely theoretically, even if we accept the existence of
the statistical mechanics for our problem, a very differ-
ent first step is possible. For example, in the present
paper, we assume only the Shannon entropy to select the
distribution. But the steady state of the MHD system
may reject to measure our knowledge to its subsystem.
In such a case, we have to use Rényi entropy and a differ-
ent distribution function [12] from the current Boltzmann
type. Before going into the complicated forests, we now
propose a familiar extension in this paper. The experi-
mental verification is now expected.
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APPENDIX: INVARIANT MEASURE OF
INCOMPRESSIBLE FLOW

Using the eigenfunction expansion associated with the
curl operator, we also obtain an invariant measure of in-
compressible ideal flow. Let u be a three-dimensional
flow in a bounded domain Q, which satisfies

Ou+ (u-Viu=F — Vp,
V.u=0,

(A1)

where p is the pressure, and F is a force (for example
F = jx B). We assume that F is not an explicit function
of u. The mass density is normalized to 1. The boundary
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condition is - u = 0 on Q. Using (u - V)u = (V x
u) X u + V(u?/2), we may write (A1) as

u=—(Vxu)xu+F—Vp, (A2)
where § = p + (u2/2). Let us expand
u= Zvjl.pj + Zﬁghg, (A3)
J =1

cf. Lemma 1. We easily verify (Vp,p;) = 0 (Vj) and
(Vp,hy) = 0 (V). We denote F; = (F, ;). By (A2)
and V X @; = Ajp;, we observe

%’Uj = _( (Z /\mvm‘Pm) X (Zvn‘Pn> 7<PJ) + FJ

=D Anmn(@m X @n,05) + F;

Il

=D Anmn(@m X o, 05) + Fj.
m#£j n#j

(Ad)

We thus have 9(dv;/dt)/Ov; = 0 (Vj). Similarly dv, is
invariant.

The complete set of ideal incompressible MHD equa-
tions comnsists of (Al) and (2.6) with f = B, v = u,
and F = pg'(V x B) x B. One thus obtains a higher
dimensional invariant measure such as [] ; de; T1 j dv;. In
the present theory, however, we do not invoke the sta-
tistical distribution with respect to [] ; dvj. This is due
to the semiempirical assertion that a finite (but small)
resistivity and viscosity violate the invariance of [, dv;
largely, while []. dc; remains almost invariant. This fact
is relevant to the hypothesis of the selective conservation
of the helicity in the MHD turbulence [11].
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